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1. INTRODUCTION

The EARMA (1,1) process was introduced by Jacobs and Lewis
(Ref. 1). When the parameter p = 1 the sequence is given by

xn-Ben-i»lJnAo forn> 1,

where en'c are i.1.d. with density f(x) = “-Xx’ x20,A>0,0<B8<]1 and
{u} 1s an 1.1.d. Bernoulli sequence with l’[lln = 1] = 1 - 8. A, has density

f(x) and is independent of the en'o.
Chernick (Ref. 2) showed that for M, = max (xl, Xps eees xn)

‘lri’: P[Hn < B(x + :n(n))] _{ re)s exp(~e%(8 + “_”‘h”) da

This asymptotic distribution denoted by G‘(x) is not an extreme-value type but
is of the general form given by Galambos (Ref. 3) p. 144. The sequence {xn}

is exchangeable.

The conditioning argument given in Chernick (Ref. 2) can be used to
obtain the joint asymptotic distribution for the maximm and minimum. This
result will be given in the next section. The maximum and minfmum are
asymptotically independent and the minimm behaves asymptotically similar to
the dnim' of an 1.1.d. sequence of exponential random variables.

Lesma 2.2.1, p. 58, Galembos (Ref. 3) can bs applied to show that
the range and midrange behave similar to the maximum asymptotically.




g 2. ASYMPTOTIC RESULTS

v ~When B8 = 1 the sequence is i.i.d., and wvhen 8= O, X, = Ao for
L each n. So we will not consider these cases.

Theorem 2,1. let {X ] 7, be an EARMA (1,1) process with p = 1 and

1>8>0.
F_.. let
! Hn = max (xl’ ng seey %) and
ho »
~. "ﬂ - -’-n (xl. Xz. ooy xn)o
- Then '

- 1
3 n-iv:l'[wn > %’ Ma < "(x_*—:-’ﬂ’ll] =e7e =)

Proof: let Kn = pumber of "1 which are 0. We consider

v PV, > M < plxt san) r'(“))] -

P[’ﬂ <X < é."_"'_?ﬂm for each 1 ].

We note ;hat K has a binomial distribution with parameters n and
1. - 8. AlcogivenAsoa, X5 = Biif Ui-Omdxi- 3i+.u Uy =1

s x + tn(n)

& let u, = QLT— and Vo " *E' Conditioning on ‘n and Ao as in Chernick

.:-: (R‘f. 2) we have

u P <X £ hi|=

- [v, < X, < u for each 1]

3 ® n u v

b n-k n nl .o~k [ n a al, =

* { Ko c)}(l 8) l’k[B <el<s]l’ [’ 5< ¢ <3 ‘]h da

:F -~ -
: 5
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Equation (1) simplifies to

o
e

-~

Plv<w,¥ <ul=

o (e “"’-{’)“—;”‘uv" (se 7 (B0 £
Aa/
+(1-p)e B (e (P®) _2 7y, mha,,

u

n

The first term in Eq. (2) clearly tends to zero as n+e,
term is bounded by

vn «Av

-A 1
£ de M da = 1-e n-).vn+o(;)

and hence the second term tends to zero also. Now

.........
............
.....

n y/ T -x Aa/g
+[ (8(e (PO -2 )+ a-m) (1S ) Pae™™ .
. v

The second




ad X
- U -Zot (g4 1-0))) 2 a4

0
E‘.; = [ e exp(-e*(8 + (l-ﬂ)ex"/a)le-h da
- 0
'! = e G,(x). This completes the proof.
8

, 1lim I 4
vaeletx*andtlnnhtnﬂ'nmmtwr[un>k] e

and because :1: P["n < Bx +]!.n(n))] = Gg(x), W, and M, are asymptotically
independent. If Gn represents the mioimum of n 1.1.4d. exponential random
variables with density £(x) = Ae™%, then P[W_> J=] = ¢™7 for each n. So
asymptotically, W_ behaves similar to Gn. On the other hand, if ﬁn is the
maximum of n 1.i.d. exponential variasbles P[ﬁu < %ﬂ—"»] + exp(-e ") as
n+», So M, does not behave at all similar to ﬁn’ and in fact the norming
constants are different.

Let Ry = M, -~ W, and T, = (M, + wn)/z. R, is called the range and
Ty is the midrange.

Theorem 2.2. PFor the EARMA (1,1) process withp =1 and 1 >8> 0

Lmelr_ < plx + 2a())) Gy(x), (3) and 1w et < % EL{;"(_“)?.] = Gy(x)e (4)
Proof. Because R, = M, - W, and 2 T, = M, + W, and for every

§>0

lim

ml’(ﬂﬂ)G)-O

direct application of Lemma 2.2.1, Calambos (Ref. 3) yields Eqs. (3) and (4).
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